The Design Process

“To Design Is To Represent”
Design activity yields description/representation of an object

-- Traditional craftsman does not distinguish between the conceptualization and the artifact
-- Separation comes about because of complexity
-- The concept is captured in one or more representation languages
-- This process IS design

Design Begins With Requirements
-- Functional Capabilities: what it will do
-- Performance Characteristics: Speed, Power, Area, Cost, . . .
Design Process (cont.)

Design Finishes As Assembly

-- Design understood in terms of components and how they have been assembled

-- Top Down *decomposition* of complex functions (behaviors) into more primitive functions

-- bottom-up *composition* of primitive building blocks into more complex assemblies

Design is a "creative process," not a simple method

Design Refinement

- Informal System Requirement
- Initial Specification
- Intermediate Specification
- Final Architectural Description
- Intermediate Specification of Implementation
- Final Internal Specification
- Physical Implementation

refinement increasing level of detail
Design as Search

Design involves educated guesses and verification
-- Given the goals, how should these be prioritized?
-- Given alternative design pieces, which should be selected?
-- Given design space of components & assemblies, which part will yield the best solution?

Feasible (good) choices vs. Optimal choices

Design as Representation (example)

(1) Functional Specification "VHDL Behavior"
Inputs: 2 x 16 bit operands- A, B; 1 bit carry input- Cin.
Outputs: 1 x 16 bit result- S; 1 bit carry output- Co.
Operations: PASS, ADD (A plus B plus Cin), SUB (A minus B minus Cin), AND, XOR, OR, COMPARE (equality)
Performance: left unspecified for now!

(2) Block Diagram "VHDL Entity"
Understand the data and control flows

ECE468 ALU design
Adapted from ©VC and © UCB
Elements of the Design Process

° Divide and Conquer
 • Formulate a solution in terms of simpler components.
 • Design each of the components (subproblems)

° Generate and Test
 • Given a collection of building blocks, look for ways of putting them together that meets requirement

° Successive Refinement
 • Solve “most” of the problem (i.e., ignore some constraints or special cases), examine and correct shortcomings.

° Formulate High-Level Alternatives
 • Articulate many strategies to “keep in mind” while pursuing any one approach.

° Work on the Things you Know How to Do
 • The unknown will become “obvious” as you make progress.

Summary of the Design Process

Hierarchical Design to manage complexity

Top Down vs. Bottom Up vs. Successive Refinement

Importance of Design Representations:

- Block Diagrams
- Decomposition into Bit Slices
- Truth Tables, K-Maps
- Circuit Diagrams

Other Descriptions: state diagrams, timing diagrams, reg xfer, . . .

Optimization Criteria:

- Gate Count
- Logic Levels
- Fan-in/Fan-out
- Area
- Delay
- Power
- Pin Out
- Cost
- Design time
- [Package Count]
Introduction to Binary Numbers

° Consider a 4-bit binary number

<table>
<thead>
<tr>
<th>Decimal</th>
<th>Binary</th>
<th>Decimal</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0000</td>
<td>4</td>
<td>0100</td>
</tr>
<tr>
<td>1</td>
<td>0001</td>
<td>5</td>
<td>0101</td>
</tr>
<tr>
<td>2</td>
<td>0010</td>
<td>6</td>
<td>0110</td>
</tr>
<tr>
<td>3</td>
<td>0011</td>
<td>7</td>
<td>0111</td>
</tr>
</tbody>
</table>

° Examples:
 • $3 + 2 = 5$
 • $3 + 3 = 6$

Two’s Complement Representation

° 2’s complement representation of negative numbers
 • Bitwise inverse and add 1
 • The MSB is always “1” for negative number => sign bit

° Biggest 4-bit Binary Number: 7
° Smallest 4-bit Binary Number: -8
Two’s Complement Arithmetic

<table>
<thead>
<tr>
<th>Decimal</th>
<th>Binary</th>
<th>Decimal</th>
<th>2’s Complement</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0000</td>
<td>0</td>
<td>0000</td>
</tr>
<tr>
<td>1</td>
<td>0001</td>
<td>-1</td>
<td>1111</td>
</tr>
<tr>
<td>2</td>
<td>0010</td>
<td>-2</td>
<td>1110</td>
</tr>
<tr>
<td>3</td>
<td>0011</td>
<td>-3</td>
<td>1101</td>
</tr>
<tr>
<td>4</td>
<td>0100</td>
<td>-4</td>
<td>1100</td>
</tr>
<tr>
<td>5</td>
<td>0101</td>
<td>-5</td>
<td>1011</td>
</tr>
<tr>
<td>6</td>
<td>0110</td>
<td>-6</td>
<td>1010</td>
</tr>
<tr>
<td>7</td>
<td>0111</td>
<td>-7</td>
<td>1001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-8</td>
<td>1000</td>
</tr>
</tbody>
</table>

Examples: \(7 - 6 = 7 + (-6) = 1\) \(3 - 5 = 3 + (-5) = -2\)

Functional Specification of the ALU

ALU Control Lines (ALUop) Function
- 000 And
- 001 Or
- 010 Add
- 110 Subtract
- 111 Set-on-less-than
A One Bit ALU

- This 1-bit ALU will perform AND, OR, and ADD

```
\[ \begin{array}{cccc}
    A & B & \text{CarryIn} & \text{CarryOut} \\
    0 & 0 & 0 & 0 \\
    0 & 0 & 1 & 0 \\
    0 & 1 & 0 & 0 \\
    0 & 1 & 1 & 1 \\
    1 & 0 & 0 & 1 \\
    1 & 0 & 1 & 1 \\
    1 & 1 & 0 & 0 \\
    1 & 1 & 1 & 1 \\
\end{array} \]
```

A One-bit Full Adder

- This is also called a (3, 2) adder
- Half Adder: No CarryIn nor CarryOut
- Truth Table:
Logic Equation for CarryOut

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Outputs</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>CarryIn</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

* CarryOut = (!A & B & CarryIn) | (A & !B & CarryIn) | (A & B & !CarryIn) | (A & B & CarryIn)

Logic Equation for Sum

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Outputs</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>CarryIn</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

* Sum = (!A & !B & CarryIn) | (!A & B & !CarryIn) | (A & !B & !CarryIn) | (A & B & CarryIn)
Logic Equation for Sum (continue)

° Sum = (\!A \& \!B \& \!CarryIn) \mid (\!A \& B \& \!CarryIn) \mid (A \& \!B \& \!CarryIn) \\
\mid (A \& B \& \!CarryIn)

° Sum = A \ XOR \ B \ XOR \ CarryIn

° Truth Table for XOR:

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>X XOR Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Logic Diagrams for CarryOut and Sum

° CarryOut = B \& \!CarryIn \mid A \& \!CarryIn \mid A \& B

° Sum = A \ XOR \ B \ XOR \ CarryIn
How About Subtraction?

- Keep in mind the followings:
 - \((A - B)\) is the that as: \(A + (-B)\)
 - 2’s Complement: Take the inverse of every bit and add 1

- Bit-wise inverse of \(B\) is \(!B\):
 - \(A + !B + 1 = A + (!B + 1) = A + (-B) = A - B\)
Overflow

<table>
<thead>
<tr>
<th>Decimal</th>
<th>Binary</th>
<th></th>
<th>Decimal</th>
<th>2's Complement</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0000</td>
<td>0</td>
<td>0</td>
<td>0000</td>
</tr>
<tr>
<td>1</td>
<td>0001</td>
<td>-1</td>
<td>1</td>
<td>1111</td>
</tr>
<tr>
<td>2</td>
<td>0010</td>
<td>-2</td>
<td>2</td>
<td>1110</td>
</tr>
<tr>
<td>3</td>
<td>0011</td>
<td>-3</td>
<td>3</td>
<td>1101</td>
</tr>
<tr>
<td>4</td>
<td>0100</td>
<td>-4</td>
<td>4</td>
<td>1100</td>
</tr>
<tr>
<td>5</td>
<td>0101</td>
<td>-5</td>
<td>5</td>
<td>1011</td>
</tr>
<tr>
<td>6</td>
<td>0110</td>
<td>-6</td>
<td>6</td>
<td>1010</td>
</tr>
<tr>
<td>7</td>
<td>0111</td>
<td>-7</td>
<td>7</td>
<td>1001</td>
</tr>
</tbody>
</table>

Examples: 7 + 3 = 10 but ...

-4 - 5 = -9 but ...

Overflow Detection

° Overflow: the result is too large (or too small) to represent properly
 - Example: -8 <= 4-bit binary number <= 7

° When adding operands with different signs, overflow cannot occur!

° Overflow occurs when adding:
 - 2 positive numbers and the sum is negative
 - 2 negative numbers and the sum is positive

° Homework exercise: Prove you can detect overflow by:
 - Carry into MSB ! = Carry out of MSB
Overflow Detection Logic

- Carry into MSB ≠ Carry out of MSB
- For a N-bit ALU: Overflow = CarryIn[N-1] XOR CarryOut[N-1]

Zero Detection Logic

- Zero Detection Logic is just a one BIG NOR gate
- Any non-zero input to the NOR gate will cause its output to be zero
The Disadvantage of Ripple Carry

- The adder we just built is called a "Ripple Carry Adder"
 - The carry bit may have to propagate from LSB to MSB
 - Worst case delay for a N-bit adder: 2N-gate delay

```
ECE468 ALU design
```

```
The Disadvantage of Ripple Carry
ECE468 ALU design
```

```
A0 → 1-bit ALU → Result0
B0 →
CarryIn0

A1 → 1-bit ALU → Result1
B1 →
CarryIn1

A2 → 1-bit ALU → Result2
B2 →
CarryIn2

A3 → 1-bit ALU → Result3
B3 →
CarryIn3

```

```
Carry Select Header
ECE468 ALU design
```

```
Carry Select Header
ECE468 ALU design
```

```
Carry Select Header
Consider building a 8-bit ALU
  - Simple: connects two 4-bit ALUs in series
```

```
**Carry Select Header (Continue)**

- Consider building a 8-bit ALU
  - Expensive but faster: uses three 4-bit ALUs

![ALU Diagram](image)

**The Theory Behind Carry Lookahead**

- Recalled: \( \text{CarryOut} = (B \& \text{CarryIn}) \mid (A \& \text{CarryIn}) \mid (A \& B) \)
  - \( \text{Cin2} = \text{Cout1} = (\text{B1} \& \text{Cin1}) \mid (\text{A1} \& \text{Cin1}) \mid (\text{A1} \& \text{B1}) \)
  - \( \text{Cin1} = \text{Cout0} = (\text{B0} \& \text{Cin0}) \mid (\text{A0} \& \text{Cin0}) \mid (\text{A0} \& \text{B0}) \)

- Substituting \( \text{Cin1} \) into \( \text{Cin2} \):
  - \( \text{Cin2} = (\text{A1} \& \text{A0} \& \text{B0}) \mid (\text{A1} \& \text{A0} \& \text{Cin0}) \mid (\text{A1} \& \text{B0} \& \text{Cin0}) \mid (\text{B1} \& \text{A0} \& \text{B0}) \mid (\text{B1} \& \text{A0} \& \text{Cin0}) \mid (\text{B1} \& \text{A0} \& \text{Cin0}) \mid (\text{A1} \& \text{B1}) \)

- Now define two new terms:
  - Generate Carry at Bit \( i \) \( \text{gi} = \text{Ai} \& \text{Bi} \)
  - Propagate Carry via Bit \( i \) \( \text{pi} = \text{Ai} \) or \( \text{Bi} \)
The Theory Behind Carry Lookahead (Continue)

- Using the two new terms we just defined:
  - Generate Carry at Bit i \( g_i = A_i \& B_i \)
  - Propagate Carry via Bit i \( p_i = A_i \lor B_i \)

- We can rewrite:
  - \( C_{in1} = g_0 \lor (p_0 \& C_{in0}) \)
  - \( C_{in2} = g_1 \lor (p_1 \& g_0) \lor (p_1 \& p_0 \& C_{in0}) \)
  - \( C_{in3} = g_2 \lor (p_2 \& g_1) \lor (p_2 \& p_1 \& g_0) \lor (p_2 \& p_1 \& p_0 \& C_{in0}) \)

- Carry going into bit 3 is 1 if
  - We generate a carry at bit 2 (g2)
  - Or we generate a carry at bit 1 (g1) and bit 2 allows it to propagate (p2 & g1)
  - Or we generate a carry at bit 0 (g0) and bit 1 as well as bit 2 allows it to propagate (p2 & p1 & g0)
  - Or we have a carry input at bit 0 (Cin0) and bit 0, 1, and 2 all allow it to propagate (p2 & p1 & p0 & Cin0)

A Partial Carry Lookahead Adder

- It is very expensive to build a “full” carry lookahead adder
  - Just imagine the length of the equation for Cin31

- Common practices:
  - Connects several N-bit Lookahead Adders to form a big adder
  - Example: connects four 8-bit carry lookahead adders to form a 32-bit partial carry lookahead adder
Summary

° An Overview of the Design Process
  • Design is an iterative process-- successive refinement
  • Do NOT wait until you know everything before you start

° An Introduction to Binary Arithmetics
  • If you use 2’s complement representation, subtract is easy.

° ALU Design
  • Designing a Simple 4-bit ALU
  • Other ALU Construction Techniques

° More information from Chapter 4 of the textbook