ECE7995
Caching and Prefetching Techniques in Computer Systems

Instructor: Dr. Song Jiang (sjiang@eng.wayne.edu)
The ECE Department

Lecture: Tuesday/Thursday 10:40AM - 12:30PM
Location: 54 MANO

Office hours: Tuesday 2:30am---4:00am
Engineering Building, Room 3150
What is the course about?

• Learn how the two most effective and widely used techniques in CSE --- caching and prefetching

 ➢ Caching is to temporarily buffer data in a faster storage device for efficient reuse.

 ➢ Prefetching is to speculatively fetch data into a faster storage device before an expected request for them is generated to a slower storage device.

 ➢ By servicing a seemingly expensive request with a much reduced cost, these techniques are effective.

 ➢ While speed differences among storage devices deployed at different levels of a hierarchical structure are ubiquitous, these two techniques are widely applied: from processor cache, main memory, hard disk, to proxy server.

 ➢ The large impact of these techniques in CSE warrants a rewarding learning effort with a dedicated course
What is the course about? (cont’d)

• Use a concentrated topic as example to understand how various design choices are made in CSE.
 ➢ While many alternatives may exist even for one component design, a judicious decision-making process is well exemplified in these techniques

• Cover both fundamental principles and state-of-the-art techniques
 ➢ learn not only how, but also understand why.

• Have a taste of what the research in the CS/CE area looks like
 ➢ Foster your curiosity in computer system research

• Learn by doing
 ➢ You are guided to obtain hands-on experience though Linux kernel hacking, though this is not a programming course.
Why you should take the course

• Caching and prefetching are two of the most techniques leading to high performance
 ➢ From computer system design to application coding, the areas where these techniques are essential are numerous.

• Linux is increasingly popular, especially in enterprise-level computing.
 ➢ Linux rules the Top 500. (Linux machines account for 372 out of the 500 fastest machines, and various UNIXes account for other 109 machines, (2005 data))
 ➢ Most people don’t understand Linux, especially how it works – including sysadmins and computer scientists!

• Research experience will go a long way for your career development.
 ➢ The course will provide a path for independent scholarship beyond the fall semester
The Organization of Course (tentative)

Part I: Lectures by instructor about caching and prefetching

• Motivation and principles
• Processor cache and row-buffer in DRAM
• Memory buffer management
• Web Proxy caching and prefetching
• Tutorials on lab projects
The Organization of Course

Part II: Paper reading and presentation by students.

- Papers on various topics will be posted.
- Each student selects a paper on a particular topic, read the paper.
- Each student gives one presentation on his/her selected paper.
The Organization of Course

Part III: Research projects and presentation

- Select one topic covered in the course;
- Find the issues in the topic;
- Propose your solution;
- Design your experiment to evaluate the solution;
- Present your work;
- Write a report on the work.
- (Optionally) Submit a paper for publication!
Workload on Students

- Attend classes and be actively involved.
- Two homework assignments on understanding lectures
- Three Linux kernel labs (step-by-step instructions will be provided, and modest C programming skills are required)
- Paper reading / presentation
- Midterm (open book)
- Research project.

Am I ready to deal with them?

- Modest knowledge on computer architecture, OS, and C programming skills is required.
- The actual workload differs for students with different background.
- Attempt to start your work, such as labs and preparation of exams, at the last minute would warrant a failure.
Course Facts

• Meet Monday/Tuesday 10:40pm --- 12:30pm
• Check website regularly
 http://www.ece.eng.wayne.edu/~sjiang/ECE7995-winter-09/ECE7995.htm
• Send course-related email to
 sjiang@eng.wayne.edu
• Office hours: Tuesday 2:30am---4:00am or by appointment at 3150 Engineering building
Reading Materials

• Suggested textbook that covers basic design of processor cache.

(or any book about operating system that covers buffer cache design.)

The above books are not required. You can find almost all the contents on the internet.

• Will post lecture slides, reading materials, and assignments on the course webpage.
Late Policy

• In generally, no late submissions will be accepted.

• However, you have three (3) late days:
 - Self-granted extensions, no need to ask for permission.
 - You use one late day even if you pass the due time by one minute
 - When late days are used up, your grade is deducted by one level for each day you pass deadline (e.g., from A- to B+ or from B+ to B)
 - This policy will be strictly enforced.

• Contact instructor in extraordinary circumstances only.
 - Job interviews do not count.
Grading

• 50%: homework assignments
 ➢ 20%: two writing homework assignments
 ➢ 30%: three Linux kernel programming labs
• 15%: paper reading and presentation
• 15%: mid-term (open book)
• 20%: research project and final report on self-selected topic (No Final Exam)

• Final grade will be distributed as
 ➢ A (100-90), A- (89-85), B+ (84-80) B (79-75), B- (74-70), C+ (69-65), C (64-60), C- (59-55) F (below 55).
Honor Code

• Will be enforced in this class;

• Avoid plagiarism, copyright infringement, and other types of academic dishonesty.

• No collaboration to specific questions in assignments, lab, and exams is allowed, while general discussions on understanding course materials and setup of coding environment are encouraged.

• As a rule of thumb, cite the source of both written and verbal contributions to your ideas and products.