Contents

Preface

1 Internet Services

1.1 Introduction ... 1

1.2 Requirements and Key Challenges 2
1.2.1 Transparency ... 2
1.2.2 Scalability .. 3
1.2.3 Heterogeneity ... 4
1.2.4 Security .. 5

1.3 Examples of Scalable Internet Services 7
1.3.1 Search Engine ... 7
1.3.2 On-line Shopping and E-Commerce 8
1.3.3 Media Streaming Services 9
1.3.4 Peer-to-Peer File Sharing 10
1.3.5 Open Grid Service 11

1.4 Road Map to the Book 11

2 Network Load Balancing

2.1 The Load Balancing Problem 15

2.2 Server Load Balancing 17
2.2.1 Layer-4 Load Balancer 18
2.2.2 Layer-7 Load Balancer 20
2.2.3 Load Balancing Policies 22
2.2.4 Load Balancing with Session Persistence 23
2.2.5 Distributed Approaches for Load Balancing 25

2.3 Load Balancing in Service Overlay Networks 26
2.3.1 HTTP Request Redirection and URL Rewriting 26
2.3.2 DNS-Based Request Redirection 26
2.3.3 Content Delivery Networks 28

2.4 A Unified W5 Load Balancing Model 30
2.4.1 Objectives of Load Balancing 30
2.4.2 Who Makes Load Balancing Decisions 31
2.4.3 What Information Is the Decision Based on 31
2.4.4 Which Task Is the Best Candidate for Migration 33
2.4.5 Where Should the Task Be Performed 34
2.4.6 When or Why Is Migration Invoked 35
6 Service Differentiation on E-Commerce Servers

6.1 Introduction .. 93
6.2 2D Service Differentiation Model 95
 6.2.1 The Model ... 95
 6.2.2 Objectives of Processing Rate Allocation 97
6.3 An Optimal Processing Rate Allocation Scheme 99
6.4 Effectiveness of 2D Service Differentiation 101
 6.4.1 A Simulation Model 101
 6.4.2 Effect on Service Slowdown 103
 6.4.3 Controllability of Service Differentiation 108
6.5 Concluding Remarks .. 109

7 Feedback Control for Quality-of-Service Guarantees

7.1 Introduction .. 111
7.2 Slowdown in an $M/G_P/1$ Queueing System 112
 7.2.1 Slowdown Preliminaries 113
 7.2.2 Slowdown on Internet Servers 114
7.3 Processing Rate Allocation with Feedback Control 115
 7.3.1 Queueing Theoretical Approach for Service Differentiation . 116
 7.3.2 Integrated Feedback Control Approach 118
7.4 Robustness of the Integrated Approach 121
7.5 QoS-Aware Apache Server with Feedback Control 123
 7.5.1 Implementation of a QoS-Aware Apache Server 123
 7.5.2 QoS Guarantees in Real Environments 124
7.6 Concluding Remarks .. 126

8 Decay Function Model for Server Capacity Planning

8.1 Introduction .. 129
8.2 The Decay Function Model 132
8.3 Resource Configuration and Allocation 136
 8.3.1 Resource Configuration 136
 8.3.2 Optimal Fixed-Time Scheduling 137
 8.3.3 Examples .. 140
8.4 Performance Evaluation 142
 8.4.1 Capacity Configurations and Variances 143
 8.4.2 Decay Function versus GPS Scheduling 145
 8.4.3 Sensitivity to the Change of Traffic Intensity 146
 8.4.4 Quality-of-Service Prediction 148
8.5 Concluding Remarks .. 149

9 Scalable Constant-Degree Peer-to-Peer Overlay Networks

9.1 Introduction .. 151
9.2 Topological Model of DHT-Based P2P Systems 152
 9.2.1 A Generic Topological Model 153
 9.2.2 Characteristics of Representative DHT Networks . 155
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.3</td>
<td>Cycloid: A Constant-Degree DHT Network</td>
<td>157</td>
</tr>
<tr>
<td>9.3.1</td>
<td>CCC and Key Assignment</td>
<td>158</td>
</tr>
<tr>
<td>9.3.2</td>
<td>Cycloid Routing Algorithm</td>
<td>160</td>
</tr>
<tr>
<td>9.3.3</td>
<td>Self-Organization</td>
<td>161</td>
</tr>
<tr>
<td>9.4</td>
<td>Cycloid Performance Evaluation</td>
<td>163</td>
</tr>
<tr>
<td>9.4.1</td>
<td>Key Location Efficiency</td>
<td>163</td>
</tr>
<tr>
<td>9.4.2</td>
<td>Load Distribution</td>
<td>165</td>
</tr>
<tr>
<td>9.4.3</td>
<td>Network Resilience</td>
<td>168</td>
</tr>
<tr>
<td>9.5</td>
<td>Concluding Remarks</td>
<td>172</td>
</tr>
<tr>
<td>10</td>
<td>Semantic Prefetching of Web Contents</td>
<td>175</td>
</tr>
<tr>
<td>10.1</td>
<td>Introduction</td>
<td>175</td>
</tr>
<tr>
<td>10.2</td>
<td>Personalized Semantic Prefetching</td>
<td>177</td>
</tr>
<tr>
<td>10.2.1</td>
<td>Architecture</td>
<td>177</td>
</tr>
<tr>
<td>10.2.2</td>
<td>Neural Network-Based Semantics Model</td>
<td>178</td>
</tr>
<tr>
<td>10.3</td>
<td>NewsAgent: A News Prefetching System</td>
<td>181</td>
</tr>
<tr>
<td>10.3.1</td>
<td>Keywords</td>
<td>181</td>
</tr>
<tr>
<td>10.3.2</td>
<td>NewsAgent Architecture</td>
<td>182</td>
</tr>
<tr>
<td>10.3.3</td>
<td>Control of Prefetching Cache and Keyword List</td>
<td>183</td>
</tr>
<tr>
<td>10.4</td>
<td>Real-Time Simultaneous Evaluation Methodology</td>
<td>185</td>
</tr>
<tr>
<td>10.5</td>
<td>Experimental Results</td>
<td>186</td>
</tr>
<tr>
<td>10.5.1</td>
<td>NewsAgent Training</td>
<td>186</td>
</tr>
<tr>
<td>10.5.2</td>
<td>Effectiveness of Semantic Prefetching</td>
<td>188</td>
</tr>
<tr>
<td>10.5.3</td>
<td>Effects of Net Threshold and Learning Rate</td>
<td>190</td>
</tr>
<tr>
<td>10.5.4</td>
<td>Keyword List Management</td>
<td>192</td>
</tr>
<tr>
<td>10.6</td>
<td>Related Work</td>
<td>192</td>
</tr>
<tr>
<td>10.7</td>
<td>Concluding Remarks</td>
<td>194</td>
</tr>
<tr>
<td>11</td>
<td>Mobile Code and Security</td>
<td>197</td>
</tr>
<tr>
<td>11.1</td>
<td>Introduction</td>
<td>197</td>
</tr>
<tr>
<td>11.2</td>
<td>Design Issues in Mobile Agent Systems</td>
<td>200</td>
</tr>
<tr>
<td>11.2.1</td>
<td>Migration</td>
<td>200</td>
</tr>
<tr>
<td>11.2.2</td>
<td>Communication</td>
<td>201</td>
</tr>
<tr>
<td>11.2.3</td>
<td>Naming and Name Resolution</td>
<td>202</td>
</tr>
<tr>
<td>11.2.4</td>
<td>Security</td>
<td>203</td>
</tr>
<tr>
<td>11.3</td>
<td>Agent Host Protections</td>
<td>203</td>
</tr>
<tr>
<td>11.3.1</td>
<td>Security Requirements</td>
<td>203</td>
</tr>
<tr>
<td>11.3.2</td>
<td>Agent Authentication</td>
<td>204</td>
</tr>
<tr>
<td>11.3.3</td>
<td>Privilege Delegation and Agent Authorization</td>
<td>205</td>
</tr>
<tr>
<td>11.3.4</td>
<td>Agent-Oriented Access Control</td>
<td>206</td>
</tr>
<tr>
<td>11.3.5</td>
<td>Proof-Carrying Code</td>
<td>207</td>
</tr>
<tr>
<td>11.4</td>
<td>Mobile Agent Protections</td>
<td>209</td>
</tr>
<tr>
<td>11.4.1</td>
<td>Security Requirements</td>
<td>209</td>
</tr>
<tr>
<td>11.4.2</td>
<td>Integrity Detection</td>
<td>211</td>
</tr>
<tr>
<td>11.4.3</td>
<td>Cryptographic Protection of Agents</td>
<td>212</td>
</tr>
</tbody>
</table>
12 Naplet: A Mobile Agent Approach

12.1 Introduction ... 219
12.2 Design Goals and Naplet Architecture 220
 12.2.1 Naplet Class 221
 12.2.2 NapletServer Architecture 223
12.3 Structured Itinerary Mechanism 226
 12.3.1 Primitive Itinerary Constructs 226
 12.3.2 Itinerary Programming Interfaces 227
 12.3.3 Implementations of Itinerary Patterns 230
12.4 Naplet Tracking and Location Finding 232
 12.4.1 Mobile Agent Tracking Overview 232
 12.4.2 Naplet Location Service 234
12.5 Reliable Agent Communication 235
 12.5.1 PostOffice Messaging Service 235
 12.5.2 NapletSocket for Synchronous Communication ... 237
12.6 Security and Resource Management 238
 12.6.1 Naplet Security Architecture 239
 12.6.2 Resource Management 240
12.7 Programming for Network Management in Naplet 242
 12.7.1 Privileged Service for Naplet Access to MIB ... 243
 12.7.2 Naplet for Network Management 244

13 Itinerary Safety Reasoning and Assurance

13.1 Introduction ... 247
13.2 MAIL: A Mobile Agent Itinerary Language 249
 13.2.1 Syntax of MAIL 249
 13.2.2 Operational Semantics of MAIL 252
13.3 Regular-Completeness of MAIL 255
13.4 Itinerary Safety Reasoning and Assurance 257
 13.4.1 Itinerary Configuration and Safety 257
 13.4.2 Itinerary Safety Reasoning and Assurance 259
13.5 Concluding Remarks 262

14 Security Measures for Server Protection

14.1 Introduction ... 263
14.2 Agent-Oriented Access Control 265
 14.2.1 Access Control in Mobile Codes 265
 14.2.2 Agent Naming and Authentication in Naplet 267
 14.2.3 Naplet Access Control Mechanism 270
14.3 Coordinated Spatio-Temporal Access Control 273
 14.3.1 Temporal Constraints 273
 14.3.2 Spatial Constraints 275
14.4 Concluding Remarks 277
15 Connection Migration in Mobile Agents
15.1 Introduction ... 279
15.1.1 Related Work .. 280
15.2 NapletSocket: A Connection Migration Mechanism 281
15.2.1 NapletSocket Architecture 281
15.2.2 State Transitions 282
15.3 Design Issues in NapletSocket 285
15.3.1 Transparency and Reliability 285
15.3.2 Multiple Connections 288
15.3.3 Security ... 289
15.3.4 Socket Hand-Off 290
15.3.5 Control Channel 291
15.4 Experimental Results of NapletSocket 292
15.4.1 Effectiveness of Reliable Communication 292
15.4.2 Cost of Primitive NapletSocket Operations 293
15.4.3 NapletSocket Throughput 294
15.5 Performance Model of Agent Mobility 296
15.5.1 Performance Model 296
15.5.2 Simulation Results 298
15.6 Concluding Remarks 300

16 Mobility Support for Adaptive Grid Computing
16.1 Introduction ... 301
16.2 An Agent-Oriented Programming Framework 303
16.2.1 The Architecture 303
16.2.2 Strong Mobility of Multithreaded Agents 305
16.3 Distributed Shared Arrays for Virtual Machines 307
16.3.1 DSA Architecture 308
16.3.2 DSA APIs ... 309
16.3.3 DSA Run-Time Support 310
16.4 Experimental Results 315
16.4.1 Cost for Creating a Virtual Machine 315
16.4.2 Cost for DSA Read/Write Operations 316
16.4.3 Performance of LU Factorization and FFT 318
16.5 Concluding Remarks 321

17 Service Migration in Reconfigurable Distributed Virtual Machines
17.1 Introduction ... 323
17.2 M-DSA: DSA with Service Mobility Support 325
17.2.1 M-DSA Architecture 325
17.2.2 An Example of M-DSA Programs 326
17.3 Service Migration in M-DSA 328
17.3.1 Performance Monitoring for Service Migration 328
17.3.2 Service Packing and Restoration 329
17.3.3 Computational Agent State Capture 331
17.3.4 Service Migration: A Summary 332
17.4 Interface to Globus Service 333
 17.4.1 Resource Management and Migration Decision 333
 17.4.2 Security Protection 334
17.5 Experiment Results .. 335
 17.5.1 Execution Time of LU and FFT on M-DSA 336
 17.5.2 Service Migration Overhead Breakdown 338
 17.5.3 Security Protection for Intercluster Communication 339
17.6 Related Work ... 340
17.7 Concluding Remarks 342

18 Migration Decision in Reconfigurable Distributed Virtual Machines 343
 18.1 Introduction .. 343
 18.2 Reconfigurable Virtual Machine Model 344
 18.3 Service Migration Decision 347
 18.3.1 Migration Candidate Determination and Service Migration Timing .. 347
 18.3.2 Destination Server Selection 349
 18.4 Hybrid Migration Decision 353
 18.4.1 Agent Migration Decision 353
 18.4.2 Interplay between Service and Agent Migration 355
 18.5 Simulation Results 356
 18.6 Concluding Remarks 361

References ... 363
Index .. 391